
J. Fluid 1Mech. (1972), 801. 56, part 3, p p .  401-427 

Printed in Great Britain 
40 1 

The determination of the bulk stress in a suspension 
of spherical particles to order c2 

By G. K. BATCHELOR AND J. T. GREEN 
Department of Applied Mathematics and Theoretical Physics, 

University of Cambridge 

(Received 20 April 1972) 

An exact formula is obtained for the term of order c2 in the expression for the 
bulk stress in a suspension of force-free spherical particles in Newtonian ambient 
fluid, where c is the volume fraction of the spheres and c < 1. The particles may 
be of different sizes, and composed of either solid or fluid of arbitrary viscosity. 
The method of derivation circumvents the familiar obstacle, of non-absolutely 
convergent integrals representing the effect of all pair interactions in which one 
specified particle takes part, by the judicious use of a certain quantity which is 
affected by the presence of distant particles in a similar way and whose mean value 
is known exactly. The bulk stress is in general of non-Newtonian form and 
depends on the statistical properties of the suspension which in turn are dependent 
on the type of bulk flow. 

The formula contains two functions which are parameters of the flow field due 
to two spherical particles immersed in fluid in which the velocity gradient is 
uniform at infinity. One of them, p(r,  t ) ,  represents the probability density for the 
vector r separating the centres of the two particles. The variation of p(r, t )  for a 
moving material point in r-space due to hydrodynamic action is found in terms of 
a function q(r) ,  and this gives p(r, t )  explicitly over the whole of the region of 
r-space occupied by trajectories of one particle centre relative to another which 
come from infinity. In  a region of closed trajectories, steady-state hydrodynamic 
action alone does not determine the relation between the values of p(r , t )  for 
different material points. The function q(r)  is singular when the spheres touch, 
and the contribution of nearly-touching spheres to the bulk stress is evidently 
important. Approximate numerical values of all the relevant functions are 
presented for the case of rigid spherical particles of uniform size. 

In  the case of steady pure straining motion of the suspension, all trajectories in 
r-space come from infinity, the suspension has isotropic structure and the stress 
behaviour can be represented (to order c2) in terms of an effective viscosity f i .  It is 
estimated from the available numerical data that for a suspension of identical 
rigid spherical particles 

the error bounds on the coefficient of c2 being about T 0.8. In  the important case 
of steady simple shearing motion, there is a region of closed trajectories of one 
sphere centre relative to another, of infinite volume. The stress system is here not 
of Newtonian form, and numerical results are not obtainable until the probability 

,hip = 1 + 2 . 5 ~  + 7.6c2, 
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density p(r,  t )  can be made determinate in the region of closed trajectories by the 
introduction of some additional physical process, such as three-sphere encounters 
or Brownian motion, or by the assumption of some particular initial state. 

In  the analogous problem for an incompressible solid suspension it may be 
appropriate to assume that for many methods of manufacture p(r, t )  is uniform 
over the accessible part of r-space, in which event the solid suspension has 
'Newtonian ' elastic behaviour and the ratio of the effective shear modulus to that 
of the matrix is estimated to be 1 + 2 . 5 ~  + 5.2~2 for a suspension of identical rigid 
spheres. 

1. Introduction 
We are concerned in this paper with the bulk rheological properties of a sus- 

pension of particles in a Newtonian fluid of uniform viscosity p. It will be assumed 
(1) that the Reynolds number of the relative motion of the fluid near one particle 
is small compared with unity and the Stokes equations describe the motion of the 
fluid, (2) that the inertia of a particle in either translational or rotational motion 
may be neglected, and (3) that no external force or couple acts on a particle. 
These conditions are usually realized in practice by smallness of the particles. It 
is assumed also that a particle moves under the influence of hydrodynamic 
stresses at  the particle surface only. The effects of Brownian motion of particles 
will not be included in the analysis. 

The particles will be assumed to be spherical, and not necessarily of uniform 
size. (The principles of the calculation are applicable also to non-spherical particles, 
although the detailed working would then be more complex.) We shall be able to 
obtain detailed numerical results only for the important special case of rigid 
spherical particles, but in the general theory there is no additional difficulty in 
supposing the material of the particles to be a Newtonian fluid of viscosity p'; the 
case of rigid particles is then obtained by taking the limit p'/p --f a, and for gas 
bubbles in liquid we put p'/p = 0. The spherical shape of a particle may be a 
consequence of the action ofa strong surface tension a t  the interface, in which case 
the sphericity is permanent, or, in the absence of surface tension, it may be a 
consequence of the initial conditions, in which case it is only instantaneous 
because a fluid drop without surface tension deforms as the motion proceeds. 
We shall allow for both these possibilities, the latter being of interest primarily 
in the analogous problem for solid elastic media which is mathematically identical 
so far as the relation between the bulk stress and the instantaneous state of the 
suspension is concerned. The two cases coalesce as p'/p --f co, when the sphericity 
is permanent for any value of the surface tension. 

The spatial distribution of particles throughout the ambient fluid is assumed to 
be random, with uniform average number density. Later we shall discuss the 
form of the probability distribution of particle configurations that is generated as 
a consequence of bulk motion of the suspension (in the case of particles which 
remain spherical). 

Averages of the various flow quantities are defined with respect to an ensemble 
of realizations of the suspension for given conditions at the boundary of the 
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dispersion. In  particular, the mean (or bulk) velocity at a point X, to be written 
as U(x), is an average over the ensemble of realizations, for some of which x lies 
in ambient fluid and for some inside a particle. The mean velocity U may also 
depend on time t. 

The relative bulk velocity in a small neighbourhood of x can always be repre- 
sented as the superposition of a pure straining motion, characterized by the 
rate-of-strain tensor 

and a rigid-body rotation with angular velocity 

8 = * V x U .  

These two quantities Eij and 8 are continuous functions of x in general, and 
there will be a region about x, of volume V say, in which Eij and 8 are approxi- 
mately uniform. In  such a region with statistically homogeneous kinematic flow 
conditions the bulk stress 'cij (also defined as an average of the stress over the 
ensemble of realizations for given x and t )  will likewise be approximately uni- 
form; and the local velocity gradient and stress will be stationary random func- 
tions of position within V .  If now the linear dimensions of V (the macroscopic 
scale of the suspension) are large compared with the average distance between 
the particles (the microscopic scale), an ensemble average at  the point x is 
identical with a spatial average over V for one realization, the latter sometimes 
being more convenient for analytioal purposes. 

It is known that, under the conditions described above, and for any concentra- 
tion of particles, there is a relation between the deviatoric part of the bulk stress 
and the conditions at  the surfaces of individual particles. This relation is 

(see, for example, Batchelor 1970), where the first term on the right-hand side is 
the deviatoric stress that would be generated in the ambient fluid in the absence 
of the particles, and the particle stress X$) is given, for particles which are 
force-free and couple-free, by 

8.. = ( (u ikxj  - +Sijgtkxl)n, -p(uinj  +ujn,)}dA. (1 .3)  
23 s,, and 

The summation in (1.2) is over all the particles in V ,  A, is the surface of one of the 
particles, the unit (outward) normal there being n, and ui and crik are the local 
velocity and stress. (When a surface tension acts at the interface, the stress in the 
integrand of (1.3) should be taken as the boundary value of the Newtonian stress 
in the ambient fluid.) 

The integral denoted by Sij has the same value for any other closed surface 
which lies entirely in the ambient fluid and encloses no particle other than that 
with surface A,, and can be regarded as the additional force dipole strength of the 
region bounded by A, resulting from the replacement of ambient fluid in this 
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region by the particle. Sij depends on the size and shape and constitution of the 
particle and on the location of the adjoining particles, as well as on the bulk 
motion. For a given state of the suspension (that is, for a given distribution of the 
particles in V ) ,  and in the absence of Brownian motion effects, we may anticipate, 
from the linearity of the equations governing the flow near one particle, that Sij 
and hence also 28) are linear functions of the bulk rate of strain Eij. However, we 
leave open for exploration later the question whether the state of the suspension 
may itself depend on the nature of the bulk motion and its history. 

In  the case of a suspension which is so dilute that the fluid motion near one 
spherical particle is independent of the presence of the other particles, it  is a 
simple matter to determine the force dipole strength Sij. A spherical particle of 
radius a with centre at position x,, is here effectively alone in infinite fluid in 
which the velocity gradient tensor is uniform, with symmetrical and unsym- 
metrical parts represented by Eij and Qi, at large distances from the particle; 
and the solution of the Stokes equations for the velocity u at position xo + r is 
found to be 

ui(xo+ r) - Q(xo) - Eijk Qjrk 

Sik(l -/3)+8iky(~-/3) for r 6 a ,  J 
where r = 1 1 - 1 .  The parameters cx and ,8 in (1 .4)  are given by 

P' 
7 P=- P' + i P  

P'+P P'+P 
a=---- 

in the case of a liquid drop held spherical by surface tension (only the tangential 
component of stress then being continuous across the interface), and by 

in the case of a liquid drop with zero surface tension at  the interface which is 
only instantaneously spherical. We note for later use the expression for the rate of 
strain in the external fluid obtained from (1 .4) :  

The corresponding local stress in the external fluid can be written down, and then 
we find from ( 1 . 3 )  that for such an isolated spherical particle 

Hence for a dilute suspension the first approximation to the particle stress is 
8.. 23 = 33ra3cxpEij. (1.8) 

X$' = 5ccxpEij, (1.9) 
1 
v 3  c = - C%na3 where 
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is the volume fraction of the spherical particles (which need not be of the same 
size) in V .  Thus the leading approximation to the particle stress for a dilute 
suspension of spherical particles is of the Newtonian form and corresponds to the 
addition of gcap to the viscosity of the ambient fluid, as found first by Einstein 
(1906) for rigid spheres (a = 1) and by Taylor (1932) for the conditionsrepresented 
by (1.5). 

There is in the literature a general belief, for which we shall later provide a 
proof, that the neglected effect of hydrodynamic interaction of the particles is of 
order c2, in which case the full expression for the deviatoric part of the bulk stress 
in a dilute suspension of spheres is 

Measurements with suspensions of rigid spheres suggest that the term of order c2 
is negligible only for c less than about 0.02 (see for instance the survey by Rutgers 
1962 a). Many investigations, both theoretical and experimental, of the form and 
magnitude of the quadratic term have been made, but reliable information is still 
not available. So far as we know, no satisfactory method of calculating it has 
been published. It is often assumed, although without justification, that the 
term of order c2 has the Newtonian form 2,uEij kc2. Measurements have been made 
of the bulk shear stress for a steady simple shearing motion, from which an 
effective viscosity can be deduced, and some of the available data for this case 
suggest that k is about 12 for a suspension of equal-size rigid spheres (Rutgers 
19623) although other, and mostly smaller, values have been proposed; the 
different values may result in part from the fitting of a quadratic function over 
different ranges of values of c. Aside from its direct practical value in extending 
the range of concentrations for which the rheological properties of the suspension 
of spherical particles are known, information about the quadratic term would aid 
our understanding of the possible effect of hydrodynamic interactions at  larger 
concentrations and perhaps for particles of different shape. 

In  this paper we give a new method of determining the bulk stress in a suspen- 
sion of spherical particles correct to order c2 which is free from hypothesis. The 
first and most essential part of the method is similar in type to that devised 
recently for the determination of the effect of hydrodynamic interactions on the 
average velocity of spheres falling through fluid under gravity (Batchelor 1972). 
In  that problem, as here, the primary theoretical difficulty arises from the fact 
that the sum of the contributions to the quantity under discussion (which is Xii in 
our case) due to the interaction of one sphere with each of the other spheres in the 
suspension taken one at  a time is not an absolutely convergent integral. Only 
when this difficulty has been overcome is it possible to reduce the calculation of 
the $-term in the expression for the bulk stress to a consideration of the hydro- 
dynamics of an encounter between just two spheres. Another important feature 
of the method is that it takes into account the non-uniformity of the probability 
density of the vector separation of the centres of two spheres which is produced 
by the bulk flow. 

In  the next three sections we describe the method and the results obtained for 
the particle stress in general form. It will be seen that numerical results for the 
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particle stress are obtainable only when information about the interaction of two 
spherical particles in a linear flow field is available. In  a companion paper 
(Batchelor & Green 1972, to be referred to hereafter as paper I) we have mar- 
shalled the known results concerning the interaction of two rigid spheres, and in 
the later sections of this paper we use this information to determine numerically 
the particle stress (to order c2) for a suspension of rigid spherical particles of 
uniform size for certain types of bulk flow. 

2. The expression for the bulk stress to order c2 in terms of two-particle 
interactions 

The mathematical expressions describing the statistical averages are simpler in 
the case of a suspension of spherical particles of uniform size, and we shall explain 
the general method in terms of this case. The generalization of the formal result 
obtained in this section to the case of a mixture of particle sizes will be seen to be 
straight-forward. 

When the volume V contains N ( B  1)  spherical particles all of radius a, the 
summation in (1.2) is equivalent to N times the average value of Sij for a given 
spherical particle of radius a over a large number of realizations (to be denoted by 
an overbar) and we may write 

(2.1) 

where n = N /  V is the mean number density of the particles and c = $7ra3n is the 
volume fraction of the particles. The first term on the right-hand side of (2.1) 
is the particle stress obtained when hydrodynamic interactions between the 
particles are completely neglected, and so the second term represents the effect 
of those interactions. 

The feature of the system that varies from one realization to another is the 
location of particles relative to that spherical particle for which the value of Sij is 
being calculated (to be termed the reference particle), and we therefore introduce 
the probability density of a configuration of N particles which is defined by the N 
position vectors of the centres and will be denoted by VN. We write P(q,.) for the 
probability density of this configuration, and P(VN I x,,) for the conditional 
probability density which applies when the presence of an additional particle 
with centre at  xo is given. Since the N particles in V are identical we have the 
normalization relations 

where here and later each of these 3N-dimensional integrals is taken over all 
possible values of the position co-ordinates of the centres of the N spherical 
particles of the configuration in V .  (The notation and its interpretation and 
standard manipulations with it are all as in the earlier paper, Batchelor 1972). 
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The ensemble average of Sij may then be expressed as 

where Sij(x,, qN) denotes the value of the surface integral in (1.3) for a spherical 
particle with centre at xo in the presence of a configuration of N other particles 
with locations specified by gN. The second of the two terms on the right-hand side 
of (2.1), representing the effect of particle interactions on the bulk stress, may 
likewise be written as 

(2.3) 

Now the probability that the centre of one particle of the configuration VN lies 
within a distance of a few sphere radii from the reference particle with centre at 
xo is of order na3 (provided of course that the presence of one sphere does not 
change radically the probability density for a second sphere at  such a distance), 
that is, of order c, which is small for a dilute suspension. And the probability that 
two particles of qN simultaneously lie in this region surrounding the reference 
particle is of order c2. We also observe that the quantity within curly brackets in 
(2.3) falls to zero as the distances of all the surrounding particles from x, tend to 
infinity. It is therefore natural to suppose that we could obtain the first approxi- 
mation to the effect of hydrodynamic interactions on the bulk stress by supposing 
that only one particle of the configuration gN has a significant effect on the value 
of Sii for the reference particle. This would correspond to replacing 

1.. . P(gNIx0) dVN by . . . P(xo + r Ix,) dr 
N !  s 

in (2.3), where P(xo + rl x,) 6r denotes the probability that the centre of a particle 
lies in the volume element dr about the point x, + r given that there is a particle 
with centre a t  xo. When r/a $ 1 the locations of the two particles are presumably 
statistically independent and 

P(x,+rlx,) z P(x,+r) = n; 

and so a necessary condition for the ‘natural ’ supposition to be correct is that the 
quantity 

should be integrable with respect to r, that is, that it should be of smaller order 
than a3/r3 when a/r < 1. Here Sij(x,, x, + r) stands for the force dipole strength of 
the reference particle in the presence of a second particle with centre at x, + r. 

To see whether this condition is satisfied we must consider the way in which 
two spherical particles interact when their separation is large. Each particle 
exerts zero resultant force on the fluid and acts as a force dipole, of strength 
given approximately by (1.8), which generates a t  distance r in unbounded fluid a 
disturbance velocity of order clEi,a3/r2 (see (1.4)), a disturbance velocity gradient 
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of order aEija3/r3, etc. Such a disturbance motion a t  the position of the other 
particle gives it an additional translational velocity, and also requires a change of 
the distribution of stress a t  the surface of this second particle, to ensure satis- 
faction of the no-slip condition there in the presence of the disturbance rate of 
strain. The corresponding addition to the value of Sij for each particle may be 
seen from (1.8) to be proportional to the disturbance rate of strain, and so to be of 
order a2pEija6/r3. It appears that the quantity (2.4) is (only just) not integrable, 
and that the straight-forward procedure suggested above is not permissible.? 
Consideration of two-particle interactions alone is not yet sufficient for the 
determination of the c2-term in the expression for the bulk stress and we must 
return to (2.3). 

The device that we adopt here, following the general procedure proposed earlier 
for problems of hydrodynamicinteractions which lead to non-convergent integrals 
in the above manner (Batchelor 1972), is to look for a quantity, Qij say, whose 
mean value is known exactly and which has the same dependence on the posi- 
tion of one distant spherical particle as Xij/(97ra3a,u) - E,, and then to reduce the 
expression for the difference between the mean values of 

S i j / ( ~ n a 3 a p )  - Eij 

and of Qii to a consideration of the effect of only one particle of the configura- 
tion VN. 

The appropriate choice of the function Qij is made evident by the fact that the 
contribution to the value of Sij for a particle with centre a t  xo due to the presence 
of a second particle with centre at  xo + r is proportional, when a/r < 1, to the 
rate of strain induced at x0 by that second particle. Noting the proportionality 
constant in (1.8), we choose 

where eij(xo, VN) is the rate-of-strain tensor at point x0 in the suspension in the 
presence of the N spherical particles specified by VN. We have available the exact 
result 

Qij =x eij(x0, V N )  - Eij, 

(2.5) E . .  = - /eij(xo, ~ N ) P ( v N ) ~ ~ N ,  
N !  

which allows us to write 

(2.6) 

The right-hand side of (2.6) replaces (2.3) (to which it is identically equal) as the 
expression for the contribution to the deviatoric part of the bulk stress due to 

t If the integration with respect to r is carried out in terms of polar co-ordinates, with 
the integration with respect to the radial co-ordinate over the infinite range being last in 
order, a finite value of the integral may be obtained, because it happens that the term of 
order d / r 3  in the expression for Sij(xo, x,, fr) for a/r --g 1 has zero average over a spherical 
surface. However, this does not eliminate the difficulty, it merely conceals it. The integral 
of (2.4) over all r-space is not absolutely convergent, and any finite value of the integral 
which is obta.ined by a particular order of integration with respect to the three scalar 
co-ordinates is without significance, unless the chosen order can be justified by some 
additional considerations. 
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hydrodynamic interactions. The change is apparently slight, but it is a vital one 
because when the configuration VN consists of only one particle at  position x,, + r 
the two terms in the integrand have asymptotic forms (when a/r < 1)  of order 
a3/r3 which cancel and in consequence the integral is absolutely convergent. 

We can now assert that, since the probability of more than one particle centre 
of the configuration VN lying within a distance of a few particle radii from xo is of 
smaller order than c,  and since particle centres outside this region have negligible 
effect on the integrand of (2.6), the contribution to the bulk stress due to inter- 
actions between spherical particles may be written as 

The integration is here over the whole of r-space; but note that P(xo + r Ixo) = 0 
when r < 2a since two spherical particles do not overlap. The null term that was 
added to (2.3) togive theright-handsideof (2.6)isnownot soinnocuous andmakes 
a contribution to the term of order c2 in the expression for the particle stress 
which is not identically zero. What we have done in essence is to observe (1) that 
precisely the same apparent indeterminacy or divergence in the average value of 
Si,(xo, xo + r) over all particle pairs occurs in the average value of eii(xo, xo + r) 
over all particle pairs, and (2) that the exact value of the complete mean of eij a t  a 
given point is known from the specification of the problem; and this enabled us to 
construct a difference quantity involving Xii(xo, xo + r) whose average over all 
particle pairs is represented by an absolutely convergent integral. 

We now consider the generalization of (2.7) to the case of a suspension of spheri- 
cal particles of different size, and introduce a size distribution function g(a), 
such that g(a) Sa is the fraction of the total number of particles in the suspension 

which have radii in the range Sa about a and g(a)da = 1. The above formal 

arguments concerning the reduction to a consideration of the interaction of just 
two spherical particles in a linear velocity field obviously remain valid when the 
particles are of different size, provided that proper account is taken of the dif- 
ferent types of particle pair which occur. For each type of pair there will be a 
contribution to the bulk stress of the form (2.7), and we can see how the radii of 
the two particles associated with Sij(xo, xo + r) separately enter the expression 
for the bulk stress by recalling the physical meaning of the two terms in the 
integrand. Thus, in a suspension of spherical particles of different sizes, 

som 

- (eii(xo; xo + r, b )  - Eci]P(xo + r, b)  g(a) g(b) dr dadb + o(c2),  (2.8) 

where the integration with respect to r is over all r-space, n is again the total 
number of particles per unit volume, Sii(x0, a;  x0 + r, b )  is the force dipole strength 
of a spherical particle of radius a with centre at x0 in the presence of a second 

1 
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particle of radius b with centre at  xo + r (and with uniform velocity gradient 
in the fluid at  infinity), eij(xo; xo + r, b )  is the rate of strain at  xo in the presence of 
a particle of radius b with centre at  xo + r, P(xo + r, b )  g ( b )  6bSr is the probability 
that a particle with radius in the range 6b about b has its centre in the range 6r 
about the position xo+r,  and P(xo+r,  blx,,a)g(b) is the corresponding proba- 
bility density conditional on there being a particle of radius a at xo. 

The relation (2.8) (or (2.7) if the particles are of uniform size) gives the con- 
tribution to the stress due to the presence of spherical particles correct to order 8, 
and is the basic result in this paper. It allows the particle stress to be calculated 
explicitly when various one-particle and two-particle functions are known (in 
addition to the size distribution function g(a), which can be regarded as a given 
property of a suspension). The function eij(xo; xo + r, b )  representing the rate of 
strain in the presence of one spherical particle is already available from (1,7). For 
the two probability density functions we have 

P(x,+r ,b)  = n, P(x,+r,blx, ,a)+n as r-foo, (2 .9 )  

but the form of P(xo+ r,  blx,, a )  is otherwise unknown. This conditional proba- 
bility density is dependent on the flow due to two spherical particles in a linear 
flow field, as we shall show in the next section. 

The remaining function in the integrand of (2.8) is the force dipole strength 
Sii(xo, a ;  xo + r, b) .  We have pointed out in paper I that, since Sij is a symmetri- 
cal tensor with zero trace which is linear in Eii and otherwise a function of r and 
scalar variables only, it may be written ast  

where the non-dimensional scalar functions K ,  L, M are functions of the non- 
dimensional distance r/a, the radius ratio b/u, and the viscosity ratio p' /p  As 
already noted, the asymptotic form of the expression (2.10)) after subtraction of 
Eij, is the same to the order (a  + b)3/r3 as that of eij(xo; xo + r, b )  - Eii, that is, 

5ab3 25ab3 
2r3 

M - -  a + b)3  
zr3 

K = o(&), L - - - (2 .11)  

as r / (a  + 6 )  --f 00. Later we shall encounter the average value of Xij over all direc- 
tions of r, which is 

= Eij ( l  + J )  (2 .12)  

say, where J is also a function of r/a, b/a and p'/p. 

t Paper I is concerned only with rigid spheres, but the fluidity of the spherical particles 
considered here makes no difference to the argument leading to (2.10) (or to (3.2) in the 
next seetion). 
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FIGURE 1. The broken lines show the far-field asymptotic forms of the functions J ( r )  and 
q(r)  for the case of rigid spherical particles of uniform size. The continuous line for J has 
been drawn to fit this far-field form and the known inner limit J = 0.2214 at r/a =2.  
The continuous line for q has been drawn to fit numerical data for identical rigid spheres 
(shown as crosses) obtained by Lin, Lee & Sather (1970) and described in paper I. 

In  paper I we have surveyed the rather limited information about the functions 
K ,  L, 31 that is presently available from different sources for the case of two rigid 
spheres. Asymptotic forms (for large r )  correct to the order (a  + b)6/r6 are ob- 
tainable, and the limiting values as r/(a + b )  --f 1 are known for the case b/a = 1. 
For the important function J it is found that 

1 5a3b3 
2r6 

J = K++L+&M N - (2.13) 

as r/(u + b )  + CQ, and 
J = 0.2214 at bfu = 1, r/u = 2. (2.14) 

The known values of the function J ( r )  a t  the two ends of the range for the case of 
two equal rigid spheres are shown in figure 1, together with a plausible inter- 
polation form which we shall use later for a numerical estimate of the particle 
stress (see also table 1). 

We remind the reader that effects of Brownian motion have not been taken 
into account in the above derivation of the particle stress. When Brownian 
forces act on the spherical particles, the expression for the particle stress needs 
modification although i t  is unaffected to order c. 



412 G .  K.  Batchelor and J .  T .  Green 

3. The probability distribution of the vector separation of two spherical 
particles 

We consider here the probability density function for the separation vector r 
drawn from the centre of a spherical particle of radius a to the centre of a spherical 
particle of radius b. In  accordance with the scheme of approximation for c < 1 
already described, we regard these two particles as being not influenced by the 
presence of other particles in the suspension. Since no two particles overlap, we 
may write 

10 for r < a + b I  
P(x,+r,blx,,a) = {np(- , - , - , t )  r b p' for r 2 a+b, 

a a  ru 
with the dependence ofp on variables other than r and t normally taken as under- 
stood. The dimensionless function p(r, t )  is determined, in part at  least, by the 
hydrodynamics of an encounter between two particles, that is, by the influence 
that the presence of one particle exerts on the movement and relative position of 
the other by means of hydrodynamic stresses.? Other physical factors may be 
relevant, such as Brownian motion of the particles and electrical forces between 
neighbouring particles, both of which are likely to be important when the particles 
are very small. However, we shall consider here only the hydrodynamic effect, 
this being the effect that is present in all circumstances. No derivation of the 
probability distribution of the two-particle separation vector as determined by 
hydrodynamic action has yet appeared in the literature, although its relevance 
in the study of rheological properties of not-so-dilute suspensions has been recog- 
nized by Lin, Lee & Sather (1970), who also noted that it is related to the equation 
for the trajectoryof one particle relative to another, and by Cox & Brenner (1971). 

The hydrodynamic problem to be solved concerns the relative motion of two 
force-free spherical particles of internal viscosity ,LA' immersed in fluid whose 
velocity a t  large distances from the particles is a linear function of position which 
is a superposition of an angular velocityS2 and a rate of strain Eii. It is shown in 
paper I that the velocity of the centre of the particle of radius b relative to that 
of the particle of radius a, to be denoted by V ( r ) ,  may be written without loss of 
generality as 

where A and B are non-dimensional functions of the scalar variables ria, b/a and 
,u'/,u. As r+a+ b, A(r )  --f 1, since the component of V parallel to the line of 
centres must be zero in the limit. When r is large, the velocity of each particle is 
approximately the same as that of a fluid particle in avelocity field like (1.4) due to 
the other particle when alone in infinite fluid, whence we see that, as ./(a + b)  --f 00, 

f Since the evolution of the probability density in time is involved, the considerations 
in this section are relevant only to the case of particles which remazk spherical, that is, to 
the case in which a and /J' are given by (1.5.) 
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We shall need also the corresponding expression for the divergence of V, viz. 

(3.4) 

The differential equation for the probability density function p(r, t )  may be 
found in the usual way from the condition that the number of particle pairs in 
r-space is conserved and the fact that a ‘material’ point in r-space representing a 
particular particle pair moves with velocity V .  This equation is 

ap - + v . v p  at = - .pV. v. 

It will be noticed that the radial component of V, viz. 

(3.5) 

has the same dependence on the direction of r as V . V .  We exploit this fact by 
writing (3.5) as 

%V.Vp at = p K  

and then, if the function q(r) is defined by 

the differential equation for p ( r ,  t )  becomes 

($+V.V) (S)) = 0. 

As defined, q(r) contains an arbitrary multiplying constant and, if we choose this 
constant so that 

q(r )  + I as ./(a + b) -+ co, 

the explicit expression for q is 

The meaning of equation (3.8) is that the quantity p/q is constant for a 
‘material’ point in r-space whose velocity is given as a function of r and t by V. 
That is, for a material point in r-space which was at  position ro a t  time to, 

(3.10) 

For any material point in r-space which comes from or goes to infinity we may 
choose r,, =co and (in accordance with (2.9)) 

(3.11) 
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corresponding to the fact that particles which are far apart do not influence each 
other’s position. It follows that for such a material point 

P(r,t) = d r ) .  (3.12) 

This is a strong result, since it gives explicitly the probability density of the pair 
separation vector at all values of r occupied by material points which have come 
from infinity in r-space, for any type of bulk flow (that is, regardless of the 
relative amount of pure straining and rigid rotation), steady or unsteady; and the 
probability density is independent of t and of the direction of r in the region 
composed of these material points which have come from infinity. 

The use that can be made of the differential equation (3.8) evidently depends 
on the nature of the bulk flow. In  the particular case of a steady pure straining 
motion, every point in the accessible part of r-space (that is, the part for which 
r 2 a + b)  lies on a trajectory of a material point in r-space (or equivalently, a 
trajectory of one particle centre relative to another) which has come from infinity. 
As a consequence, P(x, + r, blx,,, a)  may here be replaced by nq(r)in the integrand 
of (2.8) over the whole of the region r 2 a + b, making possible a good deal of 
further progress, as we shall see. Unfortunately, not all the trajectories in other 
types of bulk flow come from infinity. It may happen that some of the trajec- 
tories are closed and occupy a region into which open trajectories from infinity do 
not penetrate; for instance, in the important case of steady simple shearing 
motion bothobservation (Darabaner & Mason 1967):and analysis given in paper I 
show the existence of ‘bound’ pairs of rigid spheres which move relative to each 
other along closed paths. Equation (3.10) tells us that p/q is constant for a 
material point in r-space which is moving on such a closed trajectory, but the 
boundary condition (3.11) is not available here to enable us to determine the value 
of the constant. In  particular, we have no means of determining the relation 
between the constant values of p/q for material points on different closed trajec- 
tories (or even for different material points on the same closed trajectory) in a 
steady bulk flow. This kind of indeterminacy resulting from purely convective 
effects in a region of closed trajectories is familiar in fluid mechanics, and can be 
overcome only by the consideration of the history of the flow before the particles 
began to move along closed trajectories or by the inclusion of some process, such 
as Brownian diffusion or occasional encounters between three particles, which 
transfers particles across these closed trajectories. Any steady-state distribution 
of the particles which is made determinate by such a process of transfer across 
trajectories will presumably depend on the type of (steady) bulk flow, since the 
shape of the trajectories depends on the type of bulk flow. In  this paper we shall 
not consider further the problem of determining the probability density function 
p(r, t)  in the region of r-space occupied by closed trajectories which have not 
come from infinity. 

We conclude this section by noting the available information about the func- 
tion q(r) .  

There is fist a simple integral identity which is a consequence of conservation 
of particle number. When a body of fluid containing sphere b flows towards 
sphere a, the hydrodynamic interaction of the two spherical particles causes the 
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path of the centre of sphere b to deviate from the path taken by a material 
element of fluid in the absence of that sphere, and V . V may be non-zero, in which 
case there is a higher or lower probability of finding the centre of sphere 6 in some 
parts of r-space than in others. In  particular, fluid may flow into the spherical 
shell a < r < a+b, but the centre of the sphere of radius b cannot enter that 
region; it is as if the spherical surface r = a + b acted as a strainer for the centres of 
approaching particles. Now for a steady pure straining motion, all points in the 
region a 6 r < a+b lie on streamlines which come from infinity, and all trajec- 
tories of the centre of sphere b come from infinity. Hence in this case the fluid 
instantaneously enclosed between the two surfaces r = a and r = a + b has been 
robbed of the sphere centres which it contained when it was at  infinity, where the 
number density of sphere centres is uniform and q = 1, and the sphere centres 
taken from this fluid are piled up in the region r 2 a + b (mostly near the inner 
boundary of this region). Thus we have the integral relation ,. 

1 . 8  / I  . f 

{q(r)- 1}4;rrr2dr = $;rr{(a+b)3-a3}. (3.13) 

It should be recognized that the reference to a bulk pure straining motion in this 
argument does not imply dependence of the relation (3.13) on the type of bulk 
flow; for, asnotedearlier, the functionsA(r), B(r) andq(r) are allindependent ofthe 
bulk flow. It is the application of (3.13), not the result itself, which is restricted to 
bulk flows for which all points in the region r 2 a+b lie on open trajectories 
coming from infinity and for which as a consequence the probability density of 
the separation vector of two particles has the spherically symmetrical form 
everywhere. 

The function q(r) can be calculated explicitly from (3.9) when the functions 
A(r)  and B(r) are known. In  paper I we have gathered together the information 
about A ( r )  and B(r) that is obtainable for rigid spheres, by various methods, and 
for different parts of the range a + b < r < 00. For the far-field region r a + b it is 
possible to obtain A(r )  and B(r) correct to the order (a  + b)6/r6 without difficulty, 
and the corresponding result for q(r )  is 

S b S b  

25 a3b3 
q( r ) -  1 N -- 

2 r6 ’ 
(3.14) 

In  paper I, numerical values of A(r)  and B(r) over all except large and small 
values of (r - 2a)/a for the case b/a = 1 were obtained from the data computed by 
Lin, Lee & Sather (1970); conveniently, the function q(r)  is also simply related to 
the functions which they computed explicitly and the derived results are shown 
in table 1 and figure 1. There is a singularity in q(r )  at r = 2a, and it is necessary 
to supplement the computations of Lin, Lee & Sather (1970) by an investigation 
of the analytical forms of A(r)  and B(r) near this point. In  paper I we have shown 
by lubrication-theory methods that, when b/a = 1, 

0.78 
A N 1 - 4.0776, B N 0*4060-- 

log 6-1 
(3.15) 

as (+ 0, where Lj = ( r  - 2a)/a; the coefficient of (log (-l)-l here was obtained by 
matching the known asymptotic form to the values of the function B derived 
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from the data of Lin, Lee & Sather. Substitution of these asymptotic forms in 
(3.9) gives 

q( r )  f0.78l(log qo f-1)0.29’ (3.16) 

where q,, is a number which we may estimate to be 0-234 by making this asymp- 
totic form fit the values of q(r) at r/a = 2.0006 and 2.0025 given in table 1.  The 
relation (3.16) with qo = 0.234 provides the best available description of the 
function Q(Y) in the range 0 6 6 < 0.0025, but there are inaccuracies arising from 
the necessity to make a partial use of the computations by Lin, Lee & Sather of 
their functions d and f in this range, both of which have infinite gradients at  
f = 0. 

rla 
2.0 
2.0006 
2.0025 
2.005 
2.0075 
2.0100 
2.02 
2.03 
2.04 
2.0401 
2.05 
2.0907 
2.10 
2.1621 
2.20 
2.2553 
2.3709 
2.40 
2.5103 
2.60 
2.6749 
2.80 
2.8662 
3-00 
3.0862 

J ( r )  
0.2214 
0.221 
0-218 
0.214 
0.210 
0.207 
0.190 
0.175 
0.160 

0-149 

0.1 10 

0.079 

- 

- 

- 

- 
- 

0.046 

0.027 

0-0 16 

0.010 

- 

- 

- 

- 

cx) 

42-5 
15-1 

10.6 
7.60 

3.62 
2.80 
2.51 

2.27 

1.60 

1.30 

5.80 

2.500 

1.694 

1.372 

1.213 
1.127 

1-076 

1.047 

1.028 

1.018 

1 . 1 1  

1.06 

1-03 

1.02 

TABLE 1. Values of J ( r )  and q(r)  for identical rigid spheres. The vt-des of J ( r )  have 
been read off the approximate curve shown in figure 1.  The values of q(r) shown in the 
column on the left-hand side have been obtained directly from the numerical data given 
by Lin, Lee & Sather (1970) (q = l/r2f%? in their notation), and the values on the right- 
hand side a t  regular intervals of ./a have been read off a smooth curve through the 
accurate points. I n  the case of the value of q(r) a t  ria = 2.0006, the value of the Lin, 
Lee & Sather function %, which is equal to om r(1 - A ) ,  was obtained from the asymp- 
totic form (3.15) since this is more accurate than the computed value. 

An indication of the general accuracy of these results for q(r )  in the case of 
identical rigid spheres may be obtained by computing the value of the integral 

(3.17) 
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which, according to the identity (3.13), should equal 713. We divide the range of 
integration into three parts. In  the part ria > 3-0, the far-field form (3.14) 
(with b = a )  may be used to find a contribution 0.154 to the integral. For the part 
2.0025 6 r/a Q 3.0, a numerical integration using the values of q(r)  in table 1 
gives a contribution 1,405. And for the part 2.0 6 r/a < 2.0025, an analytical 
integration using the near-field form (3.16) gives 

= 0.596 when g = 0.0025, (3.18) 

where 7 = 0.219 log 6-' and I? denotes the Gamma function. The corresponding 
contribution to the integral (3.17) is thus 0.586. The three contributions together 
give 2-15, whereas the known exact value is 2.33. 

It is evident from these numerical values of q for the case of identical rigid 
spheres that a significant number of the sphere centres displaced from the fluid 
entering the region a < r < 2a are located very close to the inner boundary 
ria = 2. This suggests that in practice there may be departures from the theoreti- 
cal formulae due to small surface irregularities and weak molecular or electrical 
forces between two very close spheres. 

4. General aspects of the expression for the particle stress and com- 
parison with other work 

Our general expression for the particle stress in a suspension of spherical 
particles, correct to the order c2, is given in (2.8), with (1.7), (2.10), (3.1) and 
(3.10) as auxiliary relations. The probability density function P(xo + r ,  blx,, a )  
depends on r and t (as well as on b/a  and p'lp) in a way which involves the history 
of the bulk flow, or in the case of a steady state, the type of bulk flow (that is, the 
particular combination of pure straining motion and rigid rotation). The expres- 
sion for the bulk stress is in general of non-Newtonian form as a consequence of 
this dependence of P on variables other than ria (and bla and p'Ip). A necessary 
condition for a Newtonian form for the bulk stress is isotropy of the micro-struc- 
ture of the medium, and we have seen that the probability density of the vector r 
separating two particle centres lacks this spherical symmetry in general although 
i t  has it in the case of a bulk flow such that every trajectory of one particle centre 
relative to another is open and comes from infinity. 

The expression (2.8) for the particle stress takes an illuminating form if we 
carry out the integration with respect to r explicitly over the region r < a + b,  
where P ( x o + r , b l x o , a )  = 0. We find from (1.7) that the average value of 
eii(xo; x,, + r, b )  over all directions of r is Eij when r > b, showing that there is zero 
contribution to the integral in (2.8) from the range b < r < a+ b. For the integral 
of the local rate of strain over the interior of the spherical particle of radius b we 
have 
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after use of the expression (1.4) (with u replaced by b)  for the velocity distribution 
associated with a single spherical particle. Hence (2.8) may be written as 

Zp- - 5capEii 

Now the average value of the rate of strain over the ambient fluid of viscosity p 
within a volume V of the suspension is equal to 

C -- E’j - x (average of eij over the interior of particles within V ) ,  
l - c  1 - c  

which may be seen from (4.1) to be 

correct to order c. The first term on the right-hand side of (4.2) is thus simply the 
contribution of order c2 to the particle stress due to this average increase in the 
ambient rate of strain experienced by each particle. This first term represents a 
kinematic type of interaction between particles, whereby the effect of adding 
another particle to the suspension is to replace some of the ambient fluid by a 
particle and so to increase the average rate of strain over the reduced volume of 
ambient fluid. 

We obtain another view of the significance of the first term on the right-hand 
side of (4.2) by noting that, if the particles in the suspension are far apart from 
each other, with the distances between nearest neighbours being characterized 
by I $  a+b (a situation which is possible in a moving suspension only tem- 
porarily), the second term on the right-hand side of (4.2) is of smaller order 
than c2. This follows from the fact that for such a suspension p(r) is zero for 
r / (u+b) less than a number of order l/(a+b) and is of order unity for larger 
values of r/(a+b); and since the integrand in (4.2) is of smaller order than 
( ~ + b ) ~ / r ~  when (u+b)/r Q 1, the integral with respect to r is equal to a3b3Eij 
times a small number and the whole of the second term is of@). In  a suspension of 
spherical particles well separated from each other, the interaction between the 
particles is (instantaneously) wholly of the above kinematic type, so far as the 
term of order c2 in (4.2) is concerned. 

The result, that the term of order c2 in the expression for the bulk stress in a 
suspension of well-separated spherical particles has the Newtonian form and 
corresponds to a contribution to the effective viscosity equal to Qc2a2,u, agrees 
with that found recently by Walpole (1972) by a quite different method for the 
case of spherical particles of equal size without surface tension (for which a has 
the form (1.6)). Walpole was concerned primarily with the analogous problem for 
elastic media (with compressibility), for which the assumed wide separation of 
the pa,rticles is a possible, although perhaps not a realistic, permanent property. 
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His method of solution depends critically on the assumption that the distribu- 
tions of velocity and stress near one particle are the same as if that particle were 
immersed in fluid whose ambient rate of strain is uniform with the average value 
(for an incompressible medium) Eii( 1 + a c ) ,  as is permissible if each particle is in 
the ‘far-field’ of influence of all other particles. 

A link may also be made with the work by Hashin (1964a) on mathematical 
bounds to the effective viscosity of an isotropic suspension of particles of arbi- 
trary shape and internal viscosity p’ (and with zero surface tension at  the inter- 
face). By use of a variational principle Hashin found that the effective viscosity 
must lie between 

without restriction on c. When c < 1, these bounds may be written as 

p{i + ; c a + ; c w +  o(C3)) 

and 

We see that the first of these two bounds, which is the lower bound when p‘ > p 
and the upper bound when p’ < p, coincides with the actual effective viscosity 
for a suspension of spherical particles as far as the term of order c and with the 
actual effective viscosity for a suspension of well-separated spherical particles 
as far as the term of order c2. The reason for this coincidence is not wholly clear, 
but may be connected with Hashin’s choice of a trial stress distribution, for use 
in the variational principle, which is uniform within a particle; this is an actual 
property of the stress distribution for spherical particles without surface tension 
both in the approximation for small c which neglects all particle interactions 
(for see (1.4), which shows a linear velocity distribution within the sphere when 
(1.6) holds) and in an improved approximation which allows for interactions on 
the assumption that any one particle is in the far-field of influence of every other 
particle and so is still effectively immersed in fluid with uniform ambient rate of 
strain. So far as the influence of particle shape is concerned, Walpole (1972) gives 
reasons for believing that spheres represent an extreme case so that, if one of 
Hashin’s bounds is to be realized by an actual isotropic suspension, it would 
necessarily be a suspension of spherical particles. 

As a by-product of Hashin’s results, we note that if our suspension of spherical 
particles has isotropic structure, as it does have whenp(r) is a function of r alone, 
the second term on the right-hand side of (4.2) is a multiple of Eii which, in the 
case of particles without surface tension, must be positive if p’ > p and negative if 
p‘ < p. Our detailed result in $ 5  for the case p‘/p = 00 is consistent with this. 

Bounds on the effective viscosity of an isotropic suspension of arbitrary 
concentration have also been obtained by Keller, Rubenfeld & Molyneux (1967), 
for particles which are permanently spherical and have internal viscosity p’ 
(so that the expressions for a and p in (1.5) are applicable). They constructed 
upper and lower bounds to the rate of dissipation within a sphere concentric with 

27-2 
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a particle and containing only that one particle, and then found upper and lower 
bounds to the mean rate of dissipation in the whole suspension by integration 
over all values of the radius of the outer spherical boundary weighted according 
to a probability density for the distance of the nearest neighbour to the reference 
particle. The upper and lower bounds coincide with the actual effective viscosity 
as far as the term of order c, as one would expect from the method. The upper and 
lower bounds to the coefficient of c2 in the expression for k/,u depend significantly 
on the arrangement of the spheres, and are found in the case of sphere centres 
arranged (instantaneously) on a simple cubic lattice to be 

a2. 
3375 

471. 3 877 
E5a2 and -- 

It is difficult to extract specific results applicable to a random arrangement of 
spheres from the work of these authors. 

The obstacle to analytical progress represented by the lack of absolute con- 
vergence of an integral of (2.4) over all particle pairs was recognized explicitly by 
Peterson & Fixman (1963) in a paper which, perhaps through being difficult to 
follow, has not received appropriate recognition in the literature on the rheology 
of suspensions. These authors appear to give essentially the same solution to Ohis 
difficulty as that described in $2 of this paper, and they obtain an expression for 
the bulk stress in a suspension of identical rigid spheres correct to order c2 which is 
equivalent to the appropriate special form of (4.2) aside from one important 
difference. They took it for granted that all physically possible separations of two 
rigid spheres are equally probable, that is, that p ( r )  = 1 for r 2 a + b, one con- 
sequence of which is that their bulk stress takes the Newtonian form. Their 
evaluation of the integral in the expression for the effective viscosity was also 
inaccurate (see $ 7  for a further comment on this), but this is only a matter of 
detail. 

A paper with the same general purpose as the present work has recently been 
published by Cox & Brenner (1971). These authors claim to obtain a formal 
expression for the bulk stress in a suspension of force-free rigid particles of 
arbitrary shape and concentration, and they expand this expression in powers of 
the concentration and of the ratio of the particle dimension to the length scale 
of the bulk flow. We do not understand the principles of their calculation suffi- 
ciently to be able to summarize them, but we note that there is no reference to 
integrals which are not absolutely convergent and that the coefficient of c2 in 
their expression for the bulk stress appears to be different from our own. At an 
early stage of their calculation they take averages of interaction effects over all 
orientations of the particles concerned, and it is possible that this process is 
equivalent to a particular order of integration among the scalar variables of a 
multi-dimensional integral which is not absolutely convergent. 

There have been many other attempts to determine the c2-term in the expres- 
sion for the bulk stress in a suspension of particles but none, so far as we know, 
which are free from hypotheses of uncertain validity. 
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5. The effective viscosity of the suspension in a steady pure straining 
motion 

We have seen that evaluation of the integral in (2 .8 )  or (4 .2 )  is not yet possible 
for a general type of linear bulk flow (that is, for arbitrary relative amounts of 
pure straining and rigid rotation), owing to uncertainty about the form of the 
probability density function p(r, t )  in the region of r-space occupied by trajec- 
tories of one particle centre relative to another which are closed and do not come 
from infinity. For one particular type of bulk flow, viz. steady pure straining 
motion (for which S2 = 0) ,  the difficulty disappears, because the trajectories of the 
centre of one spherical particle relative to another fill the whole of the accessible 
part of r-space in that case. (This is self-evident, although lack of knowledge of 
the values of the functions A and B in the expression (3.2) for the relative velocity 
V for any except the case of rigid spheres considered in paper I makes a formal 
proof difficult.) 

For this case of a bulk steady pure straining motion, then, the probability 
density function p(r, t )  has the form q(r) over the whole of the region r 2 a + b, 
and the integral with respect to r in the expression (4 .2)  for the particle stress 
becomes 

The directional properties of the force dipole strength tensor Sij are already 
known (formally) from (2 .10) ,  and it is convenient now to carry out the integra- 
tion in (5 .1 )  with respect to the direction of r in the manner indicated by (2 .12) .  
(This is a legitimate operation, because the integrand is of smaller order than 
(a + b)3/r3 when (a + b)/r  < 1 and the way in which the integration with respect to 
r is carried out is immaterial.) The average value of eij(xo; xo + r ,  b )  over all 
directions of r is Eij (when r > b ) ,  and so (4 .2 )  may be rewritten as 

+o(c2) ,  (5 .2 )  
where, it will be recalled, 

K ,  L,  M being defined by (2 .10)  as functions of r / a  and b/a alone. 
Before going further with the manipulation of (5 .2 ) ,  we observe that the term 

of order c2 in the expression for the particle stress now has the Newtonian form. 
This important conclusion has been established only for a steady bulk pure 
straining motion, and is of course a direct consequence of the isotropy of the two- 
particle structure of the suspension which in turn is a consequence of the open 
form of all trajectories of one particle centre relative to another. 

The Newtonian stress form (5 .2 )  implies that, to order c2, the suspension can be 
characterized by an effective viscosity fi given by 

J =  K+QL+&M, (5.3) 
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where 

and 

(5.5) 

is the mean volume of a sphere. 
We cannot proceed further with a discussion of the value of ,kip for a mixture 

of sphere sizes, since no information about the functions J and q is available for 
b/a  + 1, except the asymptotic forms (2.13) and (3.14) for r / ( a + b )  9 1.  

Enough is known about the functions q and J for the case b /a  = 1, p'/p = co to 
allow an estimate of ,&/p for a suspension of identical rigid spheres, for which 
(5.4) and (5.5) reduce to 

where c = r /a .  In  $ 3  we have described the function q(5) over the whole of the 
range 2 < 5 < co: an (approximate) analytical asymptotic form near 5 = 2 where 
q is infinite, an asymptotic form as c-tco, and numerical values over the inter- 
mediate range (see table 1 and figure I) .  The available picture of J (5 )  is less 
complete, in that we know only the value of J ( { )  at 6 = 2 and the asymptotic 
form as [+a, and for values in the intermediate range i t  is necessary to use the 
rough interpolation between these two extremes shown in figure 1. We may now 
evaluate the integral in (5 .6)  by dividing the range of integration into three parts 
in exactly the same way that was done with the integral (3.17). 

For the part of the range 2 < c < 2,0025 we have 

= 0.2214 x 0-596 = 0.132 

in view of (2.14) and (3.18). For the central portion 2.0025 < 6 < 3.0 in which 
J ( 5 )  and q ( [ )  are known only numerically (from table 1 and figure I ) ,  we find by 
numerical integration that the contribution to the integral is 0.449. And for the 
outer part, 3.0 < 5 <a, we may use the asymptotic forms (2.13) and (3.14) to 
find 

Hence our estimate is 

whence f = 1+5c+7.6c2 .  
P 

By drawing the curve for J in figure 1 in different ways consistent with the end 
constraints, we find that the second of the above three contributions within 
brackets in (5.7) might be in error by about 0.06. There are also inaccuracies 
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associated with the values of q(r) ,  especially near r/a = 2, which led to an error of 
7.7 per cent in our evaluation of the integral (3.17). This suggests that the 
coefficient of c2 in (5.8) is correct to within about 10 per cent. Further detailed 
work will be needed before the value of the coefficient of c2 is known precisely. 
Our formula for fi shows exactly what quantities should be computed. 

The quadratic term in the expression for ;/p is sometimes written as k ( 2 . 5 ~ ) ~ ,  
with k being termed the Huggins constant, and our estimate (5.8) for rigid 
spheres of uniform size corresponds to 

k = 1.22. 

These conclusions concerning a steady pure straining motion will apply also to 
an unsteady pure straining motion provided that the variation of the bulk flow 
does not prevent one sphere from escaping from the neighbourhood of another. 
Steady rotation of the principal axes of a two-dimensional pure straining motion 
relative to the fluid yields a steady simple shearing motion when viewed relative 
to rotating axes, so it is clear that in some kinds of time-dependent pure straining 
motions there are closed trajectories. 

6. Steady simple shearing motion of the suspension 
The important case of bulk flow having the form of steady simple shearing 

presents special difficulties which have yet to be overcome, and we shall not do 
more here than offer a few preliminary remarks. We choose the bulk velocity to 
have components ( K X ~ ,  0,O) relative to rectilinear coordinates (xl, x2, x,), whence 

The difficulties are associated with the existence of an extensive region of 
closed trajectories of one sphere centre relative to another. The existence of 
closed trajectories in steady simple shearing motion is known from both observa- 
tion and theory, and an analytical description of them is given in paper I. 
(Figure 4 of that paper shows some of the closed trajectories for two rigid spheres 
of the same size.) The region occupied by closed trajectories is bounded internally 
by the spherical surface r = u + b and externally by a surface of revolution about 
the x,-axis which extends to infinity in the xl- and x,-directions and is asymptoti- 
cally of the form r2 - r-8 for any value of the internal viscosity of a particle. The 
region of closed trajectories thus has infinite volume. 

In  the region occupied by open trajectories, the probability density function 
p(r, t )  is equal to q(r) everywhere. On the other hand, the relation between the 
constant values of p(r,  t ) /p( r )  for different material points in the region of closed 
trajectories is not determinable from steady-state convective action in r-space 
alone. In  this regionp(r, t )  is determined by two-particle convective action from 
some assumed initial condition or by the steady-state balance of both two-particle 
convection and some additional process such as Brownian motion or three-particle 
encounters. 
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Whatever the means by which the indeterminacy is removed, considerations of 
symmetry show that the resulting probability density function p ( r ,  t )  must be an 
even function of r and of r3. 

For a bulk steady simple shearing motion represented by (6.1), the general 
expression (2.10) for the force dipole strength of one spherical particle in the 
presence of another reduces to 

The expression for the particle stress also involves the rate of strain due to a single 
spherical particle, which in general is given by (1.7) and here reduces to 

for r > b. These two expressions are to  be substituted in (4.2). Since p ( r )  is 
necessarily an even function of r3,  any term in (6.2) which, is an odd function of r3 
makes zero contribution to the integral in (4.2); and any term in (6.3) which is an 
odd function of r l , r2  or r3 makes zero contribution to the integral. Hence for 
steady simple shearing motion (4.2) becomes 

(6.4) 
in which the components of the tensor expression within the square brackets are 
as follows: 

zip, zip, x p ,  x p  0. 

The normal stresses are zero if the probability density function p ( r ,  t )  is an even 
function of each of rl and r2,  as it is when only the processes represented by 
equation (3.5) are involved, but this symmetry is likely to be lost when effects of 
Brownian motion or of three-particle encounters are introduced and the normal 
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stresses will in general have different values. The most important stress compo- 
nent is the shearing stress Xi:), and the quantity which in practice will be inter- 
preted as an effective viscosity for steady shearing motion of the suspension is 
X 1 2 / ~ .  For a suspension of identical spherical particles this ratio is given by 

+ %}Id= + o(c2). (6.5) 
r4 2r3 2r5 

In  order to go further with the calculation of this shearing stress it will thus be 
necessary to use the available information about the functions K ,  L and M 
separately (and not simply in the combination represented by J) and, in addition, 
to investigate the form of the probability density p ( r ,  t )  in the region of closed 
trajectories. 

It is mathematically and physically possible forp(r, t ) /q(r)  to be equal to unity 
everywhere, outside and inside the region of closed streamlines, in which case the 
particle stress has the Newtonian form (to order c2) and the effective viscosity of 
the suspension has the same value as for a bulk steady pure straining motion. 
This form for p ( r ,  t )  in the region of closed trajectories is permanent, so far as 
two-particle convective action alone is concerned, but it could be realized only by 
giving the particles the appropriate statistical distribution a t  some initial instant 
(as a ‘thought ’ experiment one might imagine the suspension to be subjected to a 
steady pure straining motion for a time in order to establish the required initial 
state for the steady simple shearing motion). A more realistic initial condition 
might be&- ,  to) = 1 everywherein the region of closed trajectories, corresponding 
to the suspension being well stirred before being given the prescribed bulk 
motion. (This is analogous to the Eisenschitz assumption in the calculation of the 
particle stress in a dilute suspension of rod-like particles subjected to a steady 
simple shearing motion.) The function p(r, t )  at any subsequent t then follows 
from (3.10) and in principle the particle stress could be calculated. Such a calcula- 
tion would be of limited value because i t  seems certain that in due course some 
additional process neglected in the above analysis would influence the relation 
between the values ofp(r,  t)/q(r) for different material point sin theregion of closed 
trajectories and establish a steady state which is independent of the initial con- 
ditions. There appears to be no alternative but to consider the effect of either 
Brownian motion or three-particle encounters on the probability density function 
for the vector separation of two particles. 

7. The analogous problem of elastic behaviour of a solid suspension 
It is well known that the problem of determining the mean elastic stress in a 

‘ suspension ’ of incompressible elastic particles embedded in an incompressible 
elastic matrix is mathematically identical in certain respects to that considered 
in this paper (Hashin 1964 b) .  Rate of strain in the fluid suspension is the analogue 
of total strain in the elastic suspension. The Newtonian behaviour of the ambient 
fluid with viscosity p corresponds to the matrix being composed of homogeneous 
isotropic elastic material with shear modulus p, and the same holds for the 
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particles. Surface tension at  the boundary of a particle plays no part in the 
elastic problem, so in the case of spherical particles the relevant values of a: and p 
are those given by (1.6). 

The equivalence of the two problems holds provided the statistical properties 
of the particle arrangement in the suspension are given. The formal relation 
(2.8) or (4.2) between the bulk stress and the properties of two-particle inter- 
actions can then be employed in either of the two problems. However, the way in 
which the properties of the particle arrangement are determined is different in 
the two cases. I n  the fluid suspension case, the existence of the bulk motion has an 
important influence on the probability density P ( x ,  + r, bJx,, a)  and may even 
determine it fully, whereas in the solid suspension the existence of an infinitesimal 
strain has negligible effect on thelstatistical properties of the particle arrangement. 

Thus when using (2.8) or (4.2) to calculate the elastic behaviour of a solid 
suspension of spherical particles, we ignore the dependence of P(x, + r,  blx,, a )  
on the bulk motion described in Q 3 and instead make an a priori assumption about 
the state of the suspension on the basis of available information about the way it 
was manufactured. In  the absence of specific information, the most natural 
assumption is that the suspension was well stirred in a random fashion during 
manufacture and that all physically possible positions of one particle centre 
relative to another are equally probable, that is, 

17.1) 
for r 2 a + b. The spherical symmetry of this form for the probability density for 
the separation of two particle centres leads to a ‘Newtonian ’ form for the term of 
order c2 in the expression for the bulk stress, as in the case of a fluid suspension 
subjected to a bulk steady pure straining motion, and the relations in $ 5  can be 
adapted to suit the present context simply by the formal step of putting q(r) = 1.  
In  particular, (5.4), together with (5 .5 )  in which (I = I, is now available as a 
rigorous expression for the effective shear modulus of an incompressible solid 
suspension of spherical particles of different sizes. Note that there is no restric- 
tion of this result for an elastic suspension to cases of pure strain. 

We can go further and give approximate numerical results in the case of a solid 
suspension of rigid spheres of uniform size. For that case we see from (5.6) that the 
ratio of the effective shear modulus of the suspension to the shear modulus of the 

np(r,  t )  = P(x,  + r, bJxo, a)  = n 

matrix material is 

P 
where 5 = r/a and the function J (5 )  is known roughly from the interpolation 
shown in figure 1. The integrand here is not singular a t  5 = 2, unlike that in 
(5.6). For the part of the range 2 6 5 6 3.0, we find by numerical integration that 
the contribution to the integral in (7.2) is 0.267. For 3.0 < 5 < co, we may use the 
asymptotic form (2.13) for J ,  giving a contribution 0.093. Hence our estimate is 

whence = 1+gc+5-2c2. 
P 

(7.3) 
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As in $ 5 )  we find by varying the curve in figure 1 for J that the first of the con- 
tributions to the integral might be in error by 0.04, suggesting the coefficient of c2 
in (7-3) is correct to within about f 0.3. 

The numbers in (7.3) may be compared with those obtained by Peterson & 
Fixman (1963) for a fluid suspension of rigid spheres of uniform size. They 
assumed that for all linear bulk flows the probability density for the pair separa- 
tion vector is given by (7 .1) )  which, as we have seen, is incorrect for a fluid sus- 
pension but may be appropriate for a solid suspension. For the determination of 
the function J they used a far-field expansion (with a larger number of terms than 
in (2.13))) which is inevitably inaccurate in the important range of values of r/a 
near 2 .  Their estimate of the integral in (7.2) was 0.243 (whereas ours is 0.360)) 
and their result for the numerical coefficient of c2 in the effective viscosity (or 
shear modulus) was 4.3. 
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